fR-010-394

Supporting a Component-Based

Software Engineering Approach for

the Development of Takari Products

and Future Command and Control
Systems

R.J. Vernik, M.P. Phillips & S.F. Landherr

DSTO-TR-0596

| [APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

DTIC QUALLTY LUt &
DEPARTMENT. OF DEFENCE

¢
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

!

s

THE UNITED STATES NATIONAL
TECHNICAL INFORMATICGN SERVICE
IS AUTHORISED TG

REPRODUCAE AND BELL THIS REPORT

Supporting a Component-Based Software Engineering
Approach for the Development of Takari Products and
Future Command and Control Systems

R.]. Vernik, M. P. Phillips and S. F. Landherr

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0596

ABSTRACT

This report discusses issues related to the methods and tools required to support the
development and evolution of future generations of Command Control
Communications Intelligence and Information Warfare (C31/IW) systems. It focuses
on concepts and approaches defined as part of the Takari programme and considers
issues related to tool support for the development of Takari Capability and Technology
Demonstrators (CTDs) such as the proposed Experimental C3I Technology
Environment (EXC3ITE). A Component-Based Software Engineering (CBSE) lifecycle,
which includes both Domain Engineering and Product Engineering, is proposed as a
possible development strategy. A tool categorisation framework is defined to help
define tool requirements. An initial survey of CBSE tools provides examples of
currently available tools which could be considered for each of the tool categories.

19980430 152

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
¢

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DTIC QULLITY IINCPECTED 8

DSTO-TR-0596

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555

Fax: (08) 8259 6567

© Commonuwealth of Australia 1997
AR No. AR-010-394

December 1997

APPROVED FOR PUBLIC RELEASE

DSTO-TR-0596

Executive Summary

Project Takari is a DSTO research and development programme which aims to provide
focused, coordinated and integrated research and development support for the
development of Australian Defence Force (ADF) of Command Control
Communications Intelligence and Information Warfare (C3I/IW) capability. This
programme focuses on providing the R&D foundations for integrated C3I/IW systems
which will provide ADF commanders with relevant, reliable, and timely information
for the conduct of joint and combined operations.

An important aspect of the Takari approach is the use of Capability and Technology
Demonstrators (CTDs) which will provide major foci for research. Each CTD will
address specific operational capabilities such as wide area surveillance and/or C3I
systems attributes (e.g. interoperability and security). For example, the proposed
Experimental C3I Technology Environment (EXC3ITE) is a Takari CTD which will be
used to demonstrate the potential of broadband network communications and
distributed computing technology to enhance the ADF’s C3I capability. This CTD will
provide the generic building blocks which can be utilised in several specific capability
demonstrators and in many R&D activities.

One of the major R&D areas being addressed in Takari is C3I systems issues. This area
focuses on issues such as acquisition and development approaches, the definition of
high-level architectures, assessment of performance and effectiveness, and a broad
range of other systems and software engineering concerns. The results of this work
will help ADF acquire future C3I/IW capability in a more cost-effective and timely
manner and provide an effective basis for developing and transitioning CTDs. This
report begins to consider some of these issues.

Current trends suggest that future C3I systems will be developed using Commercial-
Off-The-Shelf (COTS) hardware and software to reduce development costs and
schedules. The use of distributed object technologies may provide developers of these
software-intensive systems with the basis for dealing with heterogeneity, allow for the
development of more flexible and evolvable solutions, and facilitate a component-
based development approach. Fitzpatrick and Jackson (1997) propose how distributed
object technologies might be used for EXC3ITE. They suggest an architecture based on
the use of a distributed object infrastructure layer (or Object Bus) which deals with
networking, communication, and platform heterogeneity. The Object Bus also serves
as a component integration framework. In systems of this type, a component is
considered to be an object which supports a set of specific interfaces (e.g. Domain
Interfaces, Object Services) within an Object Framework (i.e. a domain specific set of
objects). A component-based distributed object architecture can be implemented using
various technologies, based on several competing and emerging standards such as
CORBA, DCOM, JavaBeans and ActiveX. This report considers how the development
of these types of systems might be supported through an appropriate use of software
engineering methods and tools.

The methods and tools required for a particular project need to be considered in terms
of the activities to be supported. This report provides an overview of the types of
processes and activities that need to be considered for software projects. A

DSTO-TR-0596

Component-Based Software Engineering (CBSE) lifecycle is proposed as a strategy for
projects which use a component-based development approach. This lifecycle identifies
a range of processes and activities that would need to be supported including domain
analysis, architecture development, component selection, and component assembly.
The lifecycle is used to help define categories of tools and a tool framework for CBSE.
An initial survey of CBSE tools provides examples of currently available tools which
could be considered for each of the tool categories.

In addition to proposing a possible approach for the engineering of component-based
software systems, this report discusses issues related to tool selection and use, and
identifies areas where additional research and development may be necessary if we
are to effectively support the Takari initiatives and future generations of C31/IW
systems. Issues discussed include the need to define appropriate lifecycle activities,
method and tool evaluation, the need for commonality and compatibility of methods
and tools, organisational capability and maturity, and the cost of using and misusing
tools. This report also argues that a key area of R&D that needs to be considered is
project and product visibility (including aspects of system documentation and
visualisation). This area is particularly important for the C3I/IW domain where
development is characterised by the use of evolutionary approaches, heterogeneity,
and the use of off-the-shelf components. Effective visibility is required to support
review activities and the early identification of risk. Support is also needed to aid
collaborative work, product evolution, and transitioning activities.

DSTO-TR-0596

Authors

Rudi Vernik
Information Technology Division

Rudi is a Senior Research Scientist employed in
Software Systems Engineering Group, Information
Technology Division. He currently leads the
Visualisation and Description of Component-based
Systems (VIDECS) task which is investigating how
computer-based visualisation techniques can be used
to support the acquisition, development and
maintenance of large software systems. His research
focuses on software systems visualisation techniques,
component-based software engineering and
information logistics. Rudi has a PhD in Computer
and Information Science from the University of South
Australia. He also has a Bachelor of Electronics
Engineering (with Distinction) and a Diploma of
Communications Engineering from the Royal
Melbourne Institute of Technology.

Matthew Phillips
Information Technology Division

Matthew is a researcher employed in Software
Systems Engineering Group, Information Technology
Division. His research interests include distributed
systems, programming language design, software
visualisation =~ and object-oriented software
engineering. Matthew has a Bachelor of Computer
Science (with Honours) from The University of
Adelaide.

Stefan Landherr
Information Technology Division

Stefan is Head of the Software Systems Engineering
Group in Information Technology Division. He has a
BSc (Hons.) in mathematical physics and a graduate
Diploma in Computing Science. He has worked in
DSTO for 26 years on the analysis, specification and
development of software for combat systems and other
military systems. His current research interests
include software metrics, software architectures and
software re-engineering.

DSTO-TR-0596

Contents
1. INTRODUCTION ...cccursnrusnnansesnssssssesesssnssssssssassesssasssnssssssssnsssssssssssssassnsssasssserassssssnss 1
2. OVERVIEW OF TAKARI APPROACH.......ciivnienninaienennesessescsnsesassssssssnsansaenes 2
3. DEVELOPMENTAL PROCESSES AND ACTIVITIES.. S
3.1 Software Lifecycle ProCESSES.......ocvimimieiiisiniissrsiseciseis st nes 3
3.2 Component-Based Software ENgiNeering.........c.coeuveeverneeneinninniinnisinesssisseens 4
3.3 Domain Engineering and Product-Line Developmentccoueinieenisinenincnininenns 4
3.4 An Example CBSE LifeCyCle........umiiiicisisinnsists s essssssssssssssssesssens 5
4. TOOL CATEGORIES AND EXAMPLES.......cccoevivennrennrnrerereresesssesasssssnsasaesssnes 7
4.1 Version CONLIOL......ccomiriireereemimrsiiisiissiesinssssesesesiessssese st sesssesesiessssessssesessissssans 9
4.2 MOAEIINGorieimcrieteieirieis st st 9
4.3 Component and Interface Development..........cccveerinererceiermcrniniieiseniciseisesens 10
4.4 Integration and Build Management..............overucrerciennencrmerrineniensseisssssnases 10
4.5 Infrastructure and Component Management..........coeevecennnninnniniiieiness 11
4.6 Product Verification and Validation..........c.coccoeuvuerenrnincnnee. JO O RON 11
4.7 Project Management.........coeuoewerererseruseremmnesins i snes 11
4.8 Process and Change Managementc.eeuecueruerenisirmsnssnsissines s ssssssssssssess 11
4.9 Documentation and VisualiSation.........ceeeemeernisssninininisiieisseessesssens 12
4.10 Use of Office Automation ToOIS ... 13
5. SUMMARY OF ISSUES......cocccsuererisnsrercsssasssassesnssssnssssssssssnsnssnsnssesssssssssssessssssesssns 13
5.1 Defining the activities to be SUPPOTtedocveeureisemriireretiierenersec i 13
5.2 Evaluation of methods and t0O0IS........ccoceriiniiinininicrs s 13
5.3 Need for Commonality and Compatibility........cceeeuerrinrneinniiicicssesee, 14
5.4 Organisational Capability and Maturity ... 14
5.5 Cost of Using and Misusing TOOISc..cewuvrurimirsrisressinsisiniiseessisissisistssesississsssesens 14
6. CONCLUSIONS AND RECOMMENDATIONSccoeevvurreururnee. 15
7. REFERENCES.......ccocvnmisinmmnesessisesssassssssssasssssassassenssessssesssssssassassssssssnssssssssassssasassase 16
Appendix 1: Standard Software Lifecycle Processesceceveneee. 17

Appendix 2: Initial Survey of CBSE Environments and Tools.....19

DSTO-TR-0596

ADF
API
AViDeS
C3I
C3/IW
CASE
CBSE
cM
CMVC
COM
CORBA
COTS
CTD
DARPA
DCE
DCOM
DSSA
EXC3ITE
GUI
IDE
IDL
ISPR
OLE
OMG
OMT
00
OOA/D
OODBMS
OOSE
ORB
RAD
RPC
STARS
TP
UML

DSTO-TR-0596

ABBREVIATIONS

Australian Defence Force

Application Programming Interface

Advanced Visualisation and Description of Software
Command Control Communications and Information
Command Control Communications and Information Warfare
Computer-Aided Software Engineering
Component-Based Software Engineering
Configuration Management

Configuration Management and Version Control
Common Object Model

Common Object Request Broker Architecture
Commercial-Off-The-Shelf

Capability Technology Demonstrator

Defence Advanced Research Projects Agency
Distributed Computing Environment

Distributed Common Object Model

Domain-Specific Software Architecture
Experimental C3I Technology Environment
Graphical User Interface

Integrated Development Environment

Interface Definition Language

Integrated Software Product Release

Object Linking and Embedding

Object Management Group

Object Modelling Technique

Object-Oriented

Object-Oriented Analysis and Design
Object-Oriented Database Management System
Object-Oriented Software Engineering

Object Request Broker

Rapid Application Development

Remote Procedure Call

Software Technology for Adaptable, Reliable Systems
Transaction-Processing

Unified Modelling Language

DSTO-TR-059%6

1. Introduction

This report discusses issues related to the methods and tools required to support the
development and evolution of future generations of Command Control
Communications and Information Warfare (C31/IW) systems. It focuses on concepts
and approaches defined as part of the Takari programme (Takari 1996) and considers
issues related to tool support for the development of Takari Capability and Technology
Demonstrators (CTDs) such as the proposed Experimental C3I Technology Environment
(EXCBITE).

This report argues that there are three main areas that need to be considered prior to
selecting development methods and tools. These are:

1. the project context (eg application domain, team size and organisational
complexity, capability and maturity),

2. product characteristics (eg heterogeneous, distributed, long lived, specific
technologies), and

3. process activities to be supported.

Since many of these aspects are yet to be defined for the systems of interest,
recommendations for specific tools cannot be provided. However, based on current
knowledge of proposed approaches and some initial information on the application
domain, it is possible to discuss the types of activities that may need to be supported
and provide examples of currently available tools. This report also discusses issues
related to tool selection and use and identifies areas where research and development
may be necessary if we are to effectively support the Takari initiatives and future
generations of C3I/IW systems.

Section 2 begins by providing an overview of the Takari and EXC3ITE approaches and
hence helps define the project/domain context. Section 3 then considers the types of
processes and activities that may form part of this approach. These processes and
activities are discussed in relation to a proposed Component-Based Software
Engineering (CBSE) lifecycle which includes both Domain Engineering and Product
Engineering. Section 4 then proposes a framework which identifies tool categories for
CBSE. This section also provides examples of currently available tools for each of the
tool categories. These example tools were identified as part of an initial tool survey that
was conducted as part of this work. Appendix 2 provides an overview of the survey
results.

Section 4 also argues that an important category of tools that needs to be considered is
one which deals with Documentation and Visualisation. This category of tools helps
individuals gain visibility of project and product characteristics. This is particularly
important for the development of software-intensive systems since software is an
intangible and malleable product which can be difficult to visualise. This report argues
that the complexity of projects which use evolutionary development approaches for the

DSTO-TR-05%6

development of heterogeneous distributed systems will require enhanced visualisation
support to help monitor project status, identify risks, understand products, and to
support collaborative work. The Integrated Visualisation Approach (Vernik 1996)
which has been developed by DSTO to provide improved visibility of software projects
and products is proposed as a means of dealing with these problems. As discussed in
Section 4.9, this approach uses computer-based visualisations as a means of accessing,
integrating, customising and adapting underlying project information to individual
needs. These visualisations can be used to describe various characteristics such as
project status, configuration status, software architecture, relationships between
architectural models and implementations, and component attributes. In addition, this
approach could also be used to visualise the dynamic and performance aspects of
executing C3I systems and constituent software. The use of this approach for the
development and evolution of component-based C3I/IW systems may help reduce
documentation costs and provide a basis for more timely identification of software-
related problems and risks.

Section 5 provides a summary of issues that need to be considered in relation to tool
support for future C3I/IW projects. Section 6 provides conclusions and
recommendations.

2. Overview of Takari Approach

Project Takari is a DSTO research and development programme which aims to provide
focused, coordinated and integrated research and development support for the
development of Australian Defence Force (ADF) C3I/IW capability to the year 2010.
This programme focuses on providing the R&D foundations for integrated C3I/IW
systems which will provide ADF commanders with relevant, reliable, and timely
information for the conduct of joint and combined operations. An important aspect of
the Takari approach is the use of Capability and Technology Demonstrators (CTDs)
which will provide major foci for research. Each CTD will address specific operational
capabilities such as wide area surveillance and/or C3I systems attributes (eg
interoperability and security). CTDs will deliver research results in a form which
facilitates understanding of the implications for operational capability. They will
provide components for “Battle Labs” through which scientists can work closely with
ADF combat personnel to refine appropriate technological solutions to operational
problems and to explore new technology-enabled operational concepts.

One of the major R&D areas being addressed in Takari is C3I systems issues. This area
focuses on issues such as acquisition and development approaches, the definition of
high-level architectures, assessment of performance and effectiveness, and a broad
range of other systems and software engineering concerns. The results of this work will
help ADF acquire future C3I/IW capability in a more cost-effective and timely manner
and provide an effective basis for developing and transitioning CTDs. This report
begins to consider some of these issues.

DSTO-TR-0596

The proposed Experimental C3I Technology Environment (EXC3ITE) is a Takari CTD
which will be used to demonstrate the potential of broadband network communications
and distributed computing technology to enhance the ADF's C3I capability. This CTD
will provide the generic building blocks which can be utilised in several specific
capability demonstrators and in many R&D activities. EXC3ITE will also allow the
study of a broad range of C3I systems and software engineering issues.

The trend is that future C3I systems will be developed using Commercial-Off-The-Shelf
(COTS) hardware and software components to reduce development costs and
schedules. Current trends suggest that these software-intensive systems will use
distributed object technologies to deal with heterogeneity, provide support for the
development of flexible and evolvable solutions, and to facilitate the integration of
components. Fitzpatrick and Jackson (1997) propose how this approach might be used
for EXC3ITE. They suggest an architecture based on the use of a distributed object
infrastructure layer (or Object Bus) which deals with networking, communication, and
platform heterogeneity. The Object Bus also serves as a component integration
framework. In this type of architecture, a component is considered to be an object
which supports a set of specific interfaces (eg Domain Interfaces, Object Services) within
an Object Framework (ie a domain specific set of objects). A component is an
encapsulated entity with a distinct immutable identity whose services can be accessed
through well-defined interfaces. Animportant characteristic of a distributed component
is that its implementation is hidden from the requesting client (Vinoski 1997). This type
of architecture can be implemented using various technologies based on several
competing and emerging standards (eg CORBA, DCOM). This report considers how the
development of these types of systems might be supported through an appropriate use
of methods and tools.

3. Developmental Processes and Activities

The activities to be supported for a particular project/product context need to be
considered prior to defining the methods and tools to be used. This section provides an
overview of the types of processes and activities that should be considered in general. It
then focuses on the types of activities that would need to be supported if a component-
based approach was used for the development of Takari CTDs and future C3I/IW
systems.

3.1 Software Lifecycle Processes

Developmental processes often provide the focus of many planning activities. As such,
prime consideration is often given to technical activities such as testing, design, and
coding without appropriate emphasis on the other processes that are of major
importance to a project, such as those which deal with acquisition and management.
There is ample evidence to suggest that the technological aspects of a project have less
effect on success or failure than these organisational and supporting aspects (Fenton
1991).

DSTO-TR-0596

The international standard on “Software Lifecycle Processes” (ISO/IEC_12207-1995
1995) has been developed to provide a more complete definition of the types of
processes, activities, and tasks that that may need to be defined and supported as part of
a project. This standard considers a wide range of primary processes such as
acquisition, supply, development, operation, and maintenance. ~As described in
Appendix 1, the standard also considers the organisational processes such as
management, training and infrastructure; and a range of supporting processes (eg
documentation, configuration management, quality assurance, and review). Although
this standard provides a general overview of the types of processes that need to be
considered, the actual lifecycle approach for a project needs to be defined in terms of the
project and product characteristics.

3.2 Component-Based Software Engineering

As discussed in Section 2, current trends suggest that the EXC3ITE CTD and future
C3I/IW systems will be developed using a component-based approach and
evolutionary development processes. A new discipline of Component-Based Software
Engineering (CBSE) is emerging to support the development and evolution of these
types of systems.

CBSE makes use of component integration technologies (eg Object Request Brokers), the
increasing availability of off-the-shelf components, and object-oriented approaches for
the development of timely, cost-effective, and adaptable systems (Brown 1996). Key
features of this approach include:

e Definition and use of software architectures.

e Use of application frameworks to provide product infrastructure.
e Specification, selection, and evaluation of components.

e A focus on component assembly rather than code development.

e A product-line approach supported by Domain Engineering.

3.3 Domain Engineering and Product-Line Development

If a component-based approach is to be used for the development of Takari CTDs, and
ultimately the next generation of C31/IW systems, the processes and activities that form
the basis of this approach need to be considered. Work conducted through the DARPA
sponsored Domain-Specific Software Architecture (DSSA) project (Macala, Stuckey et al.
1996) provides some insights and ideas which could be used in the development of an
appropriate approach for the domain of interest. This work focuses on reusing software
assets as part of a product-line development.

The DSSA project defined a dual lifecycle approach which includes Domain
Engineering and Application (or Product) Engineering. Domain Engineering captures
knowledge about a specific domain and develops reusable assets that can be used by the

DSTO-TR-0596

Product Engineering process to develop products which have similar characteristics (ie
a family of products). The domain assets can include domain models, domain-specific
architectures, application generators, and software modules. This approach has been
used by Software Technology for Adaptable, Reliable Systems (STARS) demonstration
projects in various domains such as Air Vehicle Training Systems, Space Command and
Control, and Intelligence-Electronic Warfare. As discussed in Section 3.4, a review of
the experiences and lessons learned from the DSSA work suggests that elements of this
approach may be applicable to the development of the next generation of C3I/IW
systems, particularly if a component-based approach is used.

Other organisations have also been active in the area of Domain Engineering and
domain-specific reuse. For example, product-line development is a major theme of
research being conducted at the U.S. Software Engineering Institute. The Software
Productivity Consortium has developed the Synthesis method which uses various
Domain Engineering approaches for supporting domain-specific reuse (O'Connor,
Mansour et al. 1994). No known work in this area is currently being undertaken in
Australia.

3.4 An Example CBSE Lifecycle

Figure 3.1 proposes a lifecycle model, based on the dual lifecycle approach, for the
development and use of CTDs in Takari. A key process in the lifecycle is Domain
Engineering. This is an iterative process which produces and evolves assets. These
assets can be used in the development of a family of capability demonstrators and could
also be used to support the development of operational C3I systems. The Domain
Engineering process involves capturing knowledge about the C3I/IW domain in a set of
domain models. These models provide the basis for developing domain-specific
architectures. Figure 3.1 shows the software architecture as one of the key assets
provided by Domain Engineering. The software architecture can be used to acquire a
range of other assets such as integration frameworks and components. The acquisition
of components may involve a range of activities including component specification and
evaluation. Domain Engineering also provides a basis for defining common tools and
approaches and for recording lessons learned.

As shown in Figure 3.1, Domain Engineering supports Product Engineering by making
available a range of information and other assets for the development of a family of
products (in this case Takari CTDs). Given a requirement for a particular CTD,
developers can conduct a Domain-Based Analysis to determine the characteristics of the
required product (as defined in the Product Specs) and the approach to be taken for
Product Development (as detailed in the plans). In conducting the Domain-Based
Analysis, the developers use the domain and architecture models to gain a better
understanding of the problem space. They view the available components, frameworks,
and lessons learned to get an appreciation of how the requirement might be met. The
results of this activity may result in changes to the requirement and updates to the
domain specific assets.

DSTO-TR-0596

l\)omain - l[:/;":alln -chitec : Software
Analys odels # Development Architecture and :
v Management

/GTD..

,CID2 Y Y Y
CTD1
D 1-Based Integrated
Requir ¢ omain-Base: Product Specs Software
quirnen Analysis " Plans Product
Releases
PRODUCT ENGINEERING

Figure 3-1 Example CBSE Lifecycle for Takari

Product Development is an iterative process which involves developing an Integrated
Software Product Release (ISPR) to meet the specified requirements. This process
involves elements of product design, component selection, component assembly,
testing, and review. The use of domain assets plays an important role in Product
Development. For example, the product design is based on the Software Architecture
and Domain Models. The resulting ISPR is developed using a standard integration
framework and related components. Domain assets also provide mechanisms for
integrating the product into an overall architecture (eg a CTD might need to interface
with other previously developed CTDs).

In addition to using domain assets, Product Engineering helps update and evolve these
assets. For example, experiences gained during Product Engineering might be captured
in lessons learned or through changes to domain and architecture models. Components
developed during Product Development may be made available as domain assets. In
some cases, a complete CTD might be considered to be a domain asset which might
ultimately be integrated with other CTDs to provide a testbed environment. The
integration of the Takari CBSE lifecycle needs to be considered in terms of the overall
lifecycle for C3I/IW acquisition. This lifecycle could also be based on a dual lifecycle
approach which draws from the Takari Domain Engineering process to provide a basis
for operational systems development. A range of additional acquisition, supply,
organisational, and supporting processes would need to be considered when defining
this approach. This is beyond the scope of this report.

The lifecycle approach proposed in' this section allows domain knowledge to be
separated from a particular software product instance. Traditionally, there has been a
problem in that domain knowledge has been embedded in the product (often as
annotations to the source code). This information is difficult to extract and hence is

DSTO-TR-0596

often lost when the product is upgraded or redeveloped. Moreover, this approach does
not effectively support reuse or evolutionary approaches. Use of a dual lifecycle
approach for Takari would allow DSTO to capture and transition domain assets to
Defence and industry based on the experiences gained through the development and
use of CTDs. It would also help establish a culture within Defence and industry, which,
together with appropriate policies, would guide how future C3I/IW systems would be
acquired and maintained.

4. Tool Categories and Examples

Clearly, the approach used for the development and evolution of C3I/IW systems will
have a major impact when defining tools required to support the various lifecycle
activities. This section proposes a framework of tool categories which could be used to
define tool needs for a Component-Based Software Engineering approach. Each tool
category is discussed in relation to the activities it supports and examples of currently
available tools. Further information on specific tools can be found in Appendix 2.

Figure 4-1 provides an overview of the tool categorisation framework. The framework
shows that a fundamental requirement for any project is the Version Control of project
information such as plans, models, components, frameworks, change data etc. Another
important category of tools that supports a range of processes and activities is office
automation. As discussed in Section 4.10, these tools support communication through
the use of electronic mail, provide a basis for sharing information (eg through the use of
World Wide Web technologies), and support a range of general tasks such as word
processing. These tools can also be used as the basis for other more specific tools. For
example, a database system could be used to develop a rudimentary requirements
management system.

The framework includes tool categories that are required for domain engineering,
product development, project management, and project support. For example,
component-based product development is supported by four main areas: Modelling,
Component and Interface Development, Integration and Build Management, and
Infrastructure and Component Management. These are discussed in Sections 4.2 - 4.5.
Where product quality is of concern, support needs to be provided for Product
Verification and Validation. As discussed in Section 4.6, this area includes test tools,
tools for component evaluation, and performance analysis tools. Tools may also be
required to support the organisational processes. For example, Project Management
tools are required to help develop plans, milestones and schedules. Process and Change
Management tools help control the project.

DSTO-TR-05%6

Documentation and Visualisation

Modelling
Product Component and Interface Process
Verification Development and Project
and rojec
S Change Management
Validation Management

Integration and Build
Mangement

Infrastructure and Component
Mangement

Office Automation

Version Control

Figure 4-1 Tool Support for CBSE

An important category of tools that need to be considered is one which helps provide
visibility of the entire enterprise: the processes, products, resources, and the
relationships between them. These tools provide visibility of a range of project
characteristics by providing needed information to those involved in a variety of
activities. These tools include those that support the generation of appropriate
documentation and computer-based visualisation tools that can customise and adapt
information to individual needs. These tools are discussed in Section 4.9.

There is some commonality in tool requirements for the Domain Engineering and
Product Engineering processes. For example, modelling tools are required to support
the development of domain models and software architectures. Modelling support is
also required in Product Engineering to capture specific requirements and for the
development of product design models. The need for commonality and compatibility of
methods and tools for the various processes is an important consideration and one
which is discussed in Section 5.3.

The tool categorisation framework provides on overview of the type of support that
may need to be considered for a project. Clearly, the project characteristics will
determine the level of support that will actually be required. For example, a stand-alone
CTD which demonstrates a particular aspect of technology, which is short lived, and
which will be developed by one or two people, might simply require support for version
control, rudimentary office automation, and software development (eg using a Rapid

DSTO-TR-0596

Application Development (RAD) tool such as Borland Delphi). A more extensive CTD
such as EXC3ITE which will provide the infrastructure for a range of R&D activities
over a significant period of time and may involve a team of dispersed individuals,
would no doubt require support for a wider range of processes including project
management, domain engineering, change management, and product verification and
validation.

4.1 Version Control

Version Control is a fundamental requirement for a project. Tools of this type must be
able to provide control for a wide range of project information and so provide a stable
repository of information. A variety of products are currently available for different
computing platforms. For Windows-based development, two of the most popular
version control tools are Microsoft’s SourceSafe and Intersolv’s PVCS. As can be seen in
Table A2.1, PVCS is used as the version control system for a range of development tools.
The most popular version control systems for UNIX development are SCCS and RCS.
Some vendors such as Rational use these products as a basis for their overall change
management systems.

When selecting a version control system, there are a range of considerations that need to
be addressed. For example, there is a need to consider the range of different forms of
data that can be controlled, the platforms to be supported, and the ability of the system
to integrate with other tools.

4.2 Modelling

Modelling support is required for a wide range of activities. Modelling tools can help
capture and generate domain models, requirements models, software architecture
models, and product design models. A wide range of tools is available to support a
variety of modelling approaches such as data flow, entity relationship, data dictionaries,
state models, event models, object-oriented models, decision trees, and scenarios. In
terms of Object-Oriented modelling, the Booch method, Jacobson’s Object Oriented
Software Engineering (OOSE), Rumbaugh’s Object Modeling Technique (OMT) have
accounted for a large proportion of the market sector. These methods have been
consolidated into a common approach called the Unified Modelling Language (UML).
UML has been submitted to the Object Management Group (OMG) for adoption as a
standard visual modelling language for object systems. A variety of modelling tools are
available to support these methods. Currently, the most popular is Rational Rose which
is offered by several vendors as a third-party add in to their development environments
(eg see DEC Forte). Microsoft has also licensed this technology to provide modelling
support for the Microsoft Visual Studio developers toolkit. There are many other
modelling methods and tools available. For example, Ascent Logic’s RDD-100 system
modelling approach was used extensively to support domain modelling as part of the
STARS DSSA demonstrator projects.

Some modelling tools provide software development support by way of a “round trip
engineering approach”. For example, Rational Rose and i-Logix Rhapsody allow code
for various languages to be generated from design models. Code can also be reverse-

DSTO-TR-0596

10

engineered back into the models thereby keeping the models and implementations
consistent.

4.3 Component and Interface Development

These tools provide support for software development, particularly those aspects which
deal with developing components and interfaces. The CBSE approach focuses on
component development/assembly rather than traditional code development. A
variety of visual programming tools have recently become available to support the
development of user interfaces through the use of a “drag and drop” approach to
component reuse (eg Microsoft’s Visual Basic, Borland Delphi,). In addition to creating
and using custom controls, many tools now also provide support for the generation and
use of ActiveX components. There has also been significant interest in support for Java
development through the development and use of JavaBeans components. Several
product offerings will support this approach including Sun’s Java Workshop, Borland’s
Jbuilder, IBM’s VisualAge, and Symantec’s Visual Café. Support for the development of
interface software for various middleware products (eg using CORBA IDL) also needs
to considered in terms of this category of tools.

4.4 Integration and Build Management

This tool category supports application development by providing support for
component integration and the generation of Integrated Software Product Releases
(ISPR) or software ‘builds’. Various tools have been developed to support these
functions. For example, the UNIX ‘make’ system provides a rudimentary form of build
management. Integrated environments such as Rational Apex extend these concepts to
support large teams and complex product families. Application generators such as
Genesis and Predator (Batory, Singhal et al. 1994) have been used to synthesise complex
software systems from reusable components. These types of tools are needed to generate
and manage the various product releases developed by the project. They are
particularly important when teams of people are involved and an evolutionary
development process is being used.

Although there are several approaches and tools available to support the generation of
ISPRs, they provide support for predominantly homogenous systems. Future C3I/IW
systems will be distributed heterogeneous systems built using a range of COTS
components, application frameworks, and incorporate complex interfaces to legacy
systems. The use of component integration technologies such as CORBA and DCOM
show promise for supporting the generation of these types of systems. Some tools are
beginning to emerge which support the integration of some COTS components such as
databases. For example, Borland’s Jbuilder will support the integration of Visigenic’s
Object Request Broker and a range of database systems, and Oracle has proposed an
approach for integrating legacy databases into distributed object applications.
However, more sophisticated tools will be required to more fully support these
activities.

DSTO-TR-0596

4.5 Infrastructure and Component Management

A component-based development approach relies on ready access to components.
Support is required to manage domain components and the integration framework.
During product development, there is a need to be able to quickly identify and gain
access to a required component. This type of support is beginning to emerge in relation
to ActiveX/COM components and the Microsoft VisualStudio toolset. Support is
provided for managing available components in a component registry. Integrated
support is also provided for viewing component descriptions including interface
properties. This type of support will also be provided for JavaBeans and CORBA
through tools such as Borland’s J-Builder and Symantec’s Visual Café.

4.6 Product Verification and Validation

Product Verification and Validation tools are required to help assess the quality of
products. One area that needs to be considered is the area of software testing. A variety
of testing tools are available and they support a range of needs. For example, Aonix StP
will generate test cases from requirements and Pure Atria’s ClearCoverage can provide
test coverage information. Microsoft VisualTest is a tool which integrates with
VisualStudio and Rational tools and is specifically designed to support a component-
based approach. '

Validation of models is another area that may need to be considered. For example, tools
such as i-Logix Rhapsody provide animation to support the validation of Object-
Oriented design models.

Other tools in this category include tools that support component evaluation (eg by way
of metrics tools), performance measurement and monitoring tools, and tools such as
Pure Atria’s Purify which conducts memory use testing. Consideration also needs to be
given to tools that support the analysis of usage data that would be obtained from
instrumented applications. These types of techniques and tools play a key role in
supporting research activities and can provide a basis for more effective use of systems
(Vernik 1996).

4.7 Project Management

Project Management tools provide support for developing plans, schedules and
milestones. Microsoft Project is a example of this type of tool. Other project
management activities that may need to be supported include cost estimation/tracking
and risk management. Some integrated environments such as Ascent Logic’s RDD-100
provide support for project management. However, in most cases these are stand-alone
tools which at best are loosely integrated into an environment.

4.8 Process and Change Management

Process and change management plays an important part in a project. It can involve a
range of activities such as task allocation, defect tracking, and problem reporting. Many

11

DSTO-TR-0596

12

of the configuration management functions can be considered part of this category.
Version Control provides the basic control of information items for a project. Additional
functions are required to capture and record change requests, define actions to be
undertaken, map actions to individual tasks, and invoke appropriate processes. Process
and change management of this type is required for a wide range of project artefacts
such as requirements, architecture models, domain models, and software components.
Examples of tools that provide this type of support are Rational's Summit and Pure
Atria’s ClearCase. Other tools that might be considered in this category are tools that
provide process measures and requirements management tools.

4.9 Documentation and Visualisation

Tools in this category are particularly important since they help individuals gain
visibility of project and product characteristics. The information provided can be used
to support a variety of activities such as project status reviews, product reviews, risk
assessment, and process improvement. This type of information also supports
collaborative work. It needs to be provided in a timely and cost-effective manner.

This type of support can be provided in a variety of ways. For example, several vendors
provide automated documentation generation systems which consolidate information
obtained from various sources (eg CASE tools) into a standard documentation format.
Tools such as Ascent Logic’s RDD-100 and Rational’s SoDA can provide this type of
support. Key problems with this type of approach are that the information provided is
not tailored to a particular need, the resulting documents can be expensive to produce
and use, and the information provides details at a particular point in time and so may
not be an accurate representation of current status.

Several tools have reporting facilities which can be used to help gain insights into
particular project or product characteristics. However, a major problem can result when
information from several sources needs to be assimilated into a more complete picture.
Moreover, information from specific tools cannot generally be customised or adapted to
a particular need. The Advanced Visualisation and Description of Software (AViDeS)
R&D task (ALO 94/081) (http://www-se.dsto.defence.gov.au/avides/) has been
conducted by Information Technology Division to study these issues. One of the key
outcomes of this task is the definition an Integrated Visualisation Approach which uses
novel computer-based visualisation techniques to provide more effective information to
those involved in tasks associated with the acquisition, development, and maintenance
of software-intensive systems. This approach (as implemented in an Integrated
Visualisation Environment) uses a Composite Systems Model to support the integration
of information and views. The approach has been used to access and integrate
information from a range of CASE tools and other sources during the development of
predominantly homogenous software systems. These studies suggest that this approach
may prove of benefit for the development of Takari CTDs and future C3I/IW systems
where the effectiveness of system visibility may determine success or failure.

DSTO-TR-0596

410 Use of Office Automation Tools

The use of office automation tools is an important consideration since they can be used
to support a variety of needs. These include tools such as a word-processor,
spreadsheet, database, electronic mail, and web browsing/publishing. In addition to
supporting communication amongst team members and other stake holders, these tools
can be used to develop other tools. For example, instead of acquiring a fully integrated
process and change management tool such as Rational Summit, a small project may only
require a simple defect tracking system which could be cost-effectively developed using
a general database such as Microsoft Access. When selecting office automation tools for
a project, consideration needs to be given to how the tools will integrate with other tools
that may have been chosen.

5. Summary of Issues

A range of issues need to be considered in terms of providing support for the
development of Takari CTDs and future C3I/IW systems. In addition to discussing
these issues, this section identifies areas where additional research and development
may be required if appropriate support is to be provided.

5.1 Defining the activities to be supported

As previously discussed, specific tools cannot be selected until there is a clear definition
of the activities to be supported and the technologies to be used. Activities are defined
in terms of the project characteristics and the approaches used for development. This
report has provided examples of a component-based approach and a CBSE lifecycle
which could be used as a basis for developing future C3I/IW systems. Work needs to
be undertaken to more fully define the overall acquisition and development approach
(and the associated tool categories) to provide guidance to those involved with selecting
and procuring tools. Knowledge of available tools for the C3I/IW domain needs
established and maintained.

Those activities that are important but are not supported effectively by available tools
must also be identified. There may be a need to develop specific tools (eg using office
automation tools as a basis) or generic tools such as the Integrated Visualisation
Environment proposed in Section 4.9 to support these needs.

5.2 Evaluation of methods and tools

Evaluations may need to be conducted to support method and tool selection and to help
gain an understanding of their limitations. For example, scalability and maturity of
methods and tools can be major problems (Vernik and Turner 1992). There is a need to
assess whether a particular method is suitable for the task at hand. For example, several
visual modelling methods may be applicable for a particular task but which is the most
appropriate? Which tool best supports the method? Evaluation may be done by

13

DSTO-TR-0596

14

applying the methods and tools in pilot projects and through laboratory
experimentation. Evaluation activities can also be supplemented with information (eg
lessons learned) gleaned from other projects.

There is a need to consider trade-offs when selecting tools. For example, a choice often
needs to be made between tools that comprise an integrated toolset versus individual
“best of breed” tools.

5.3 Need for Commonality and Compatibility

Commonality of methods and tools is an important consideration. There are a range of
benefits that could be gained by selecting common methods and tools for Takari
developments. For example, commonality would allow for improved communication
between various stakeholders, DSTO teams, and industry. It may also provide a better
basis for collaborative work. Commonality of methods and tools may also allow for
more effective transfer of people between teams, reduce training costs, and provide for
more effective use of technologies (eg through the establishment of user groups which
would provide a basis for the sharing of knowledge and experiences and support the
development of project standards). Although there are many areas where the selection
of standard tools and methods might be applicable (eg modelling approaches, version
control), sufficient flexibility must be allowed to support those areas where “best of
breed” approaches might be applicable. Rather than dictating a standard set of methods
and tools for Takari, mechanisms should be established to suggest recommended
solutions based on an appropriate evaluation of options.

The compatibility of methods and tools also need to considered. For example, will a
selected development tool integrate with the project’s version control system? How
effectively does a particular CASE tool support a selected modelling approach? Many
tools have proprietary data stores and do not allow external access to underlying
information. This can hinder tool and information integration and hence limit the ways
in which the tool can be used.

5.4 Organisational Capability and Maturity

Prior to selecting tools, there is a need to consider capability and maturity of the
organisation (Humphrey 1989) and thus its ability to effectively incorporate and use
particular types of tools. If processes and activities are not clearly thought out and
defined (ie the organisation is at a low maturity level in terms of software engineering),
the tools may not be used or may be used inappropriately. To be effective, tools must be
integrated into well-defined development processes.

5.5 Cost of Using and Misusing Tools

The purchase cost of the tool is only a proportion of the cost of transitioning a tool into
an organisation. There also other costs to consider, such as the cost of training
personnel in the use of the tools and the methods it supports, and the costs associated
with the (re) engineering of processes to accommodate the tool. The cost of misusing

DSTO-TR-0596

tools can also be a major risk for projects. For example, individuals can become seduced
by tools and lose track of the main objectives. In the case of visual modelling tools, this
can result in large complex models which do not capture the essence of the problem and
which can be difficult, if not impossible, to comprehend and use.

6. Conclusions and Recommendations

This report has discussed a range of issues related to the selection of tools (and their
associated methods) to support the development and evolution of Takari products and
future C3I/IW systems. The report argues that tools must be selected based on the
project context, project characteristics, and the activities to be supported. Most of these
aspects are as yet undefined for Takari. As such, recommendations for specific tools
cannot be made. However, it is possible to consider possible approaches based on
current software engineering practices and define particular areas where tool support
may be required. This report has proposed a Component-Based Software Engineering
approach as an example of an approach which may be applicable to the C3I/IW
domain. Tool categories that may be required to support CBSE within this domain have
been identified and discussed.

Recommendations are:

1. Emphasis needs to be directed towards defining an overall development approach
for the C3I/IW domain and Takari developments. The approach needs to be
considered in relation to the acquisition processes. A Component-Based Software
Engineering approach which supports both Domain Engineering and Product
Engineering should be considered as an option when defining the development
approach and strategy. A well defined approach will provide a basis for planning
and ultimately, method and tool selection.

2. A focus area should be established in ITD to capture and maintain knowledge about
methods and tools applicable to the C3I/IW domain. This area may need to perform
method and tool evaluations, provide guidance on selection of tools and tool use, and
help support the integration of tools and project information. There is also a need to
identify areas where tool support is not available and where additional R&D needs to
be directed. The tools survey needs to be progressively updated with new tools. It
should be extended to include information on tool costs, compatibility aspects, and
specific recommendations.

3. A key area of R&D that needs to be considered is documentation and system
visualisation. This area is particularly important for the C3I/IW domain where
development is characterised by the use of evolutionary approaches, heterogeneity,
and the use of off-the-shelf components. Effective visibility of project and products is
required to support review activities and the early identification of risk. Support is
also needed to aid collaborative work, product evolution, and transitioning activities.
This R&D area should consider issues related to the costs and timeliness of
information required for a range of project activities.

15

DSTO-TR-0596

16

7. References

Batory, D., V. Singhal, et al. (1994). “The GenVoca Model of Software-System
Generators”. IEEE Software September: 89-94.

Brown, A. W., Ed. (1996). “Component-Based Software Engineering”. Los Alamitos, CA,
IEEE Computer Society Press.

Fenton, N. E. (1991). “Software Metrics: A Rigorous Approach”, Chapman and Hall.

Fitzpatrick, M. and D. Jackson (1997). “Issues in C3I Architectures”, Distributed Systems
Technology Centre. Brisbane, QLD.

Humphrey, W. S. (1989). “Managing the Software Process”, Addison-Wesley, New
York.

1SO/1EC_12207-1995 (1995). “Information Technology - Software Life Cycle Processes”,
International Standards Organisation.

Macala, R. R., L. D. Stuckey, et al. (1996). “Managing Domain-Specific Product-Line
Development.” IEEE Software, May : 57-67.

O'Connor, J., C. Mansour, et al. (1994). “Reuse in Command and Control Systems”. IEEE
Software,Sep : 70-79.

Takari (1996). C3I/IW Research and Development Plan for Takari. http://www-
sa.dsto.defence.gov.au/ DSTO/ divisions/ takari/ takunc.pdf, DSTO/ITD.

Vernik, R. J. (1996). “Visualisation and Description in Software Engineering”. PhD
Thesis, Computer and Information Science, University of South Australia: 232.

Vernik, R. J. and I Turner (1992). “Techniques and Tools for Analysing Software
Products”. Australian Computer Journal 24(3): 98-105.

Vinoski, S. (1997). “CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments”. IJEEE Communications Magazine, 14(2) February : 46-55.

DSTO-TR-0596

Appendix 1: Standard Software Lifecycle Processes

The term lifecycle process is often used in the literature. But what is a lifecycle process?
ISO/IEC_12207-1995 defines a process as "a set of interrelated activities which transform
inputs to outputs". This standard defines processes in terms of sets of activities and
tasks which need to be performed. Tasks are well-defined work assignments and are
defined as the smallest unit of work subject to management accountability
(IEEE_Std_1074-1991). Humphrey (1995) extends these definitions by suggesting that a
software process sets out the technical and management framework for applying
methods, tools, and people to the software task.

PRIMARY SUPPORTING
LIFE CYCLE PROCESSES LIFE CYCLE PROCESSES

Acquisition Documentation

Configuration

Supply Management

l Quality Assurance
Operation I verification |
Validation
Development Joint Review
IMaintenance B Audit

Problem Resolution

ORGANISATIONAL LIFE CYCLE PROCESSES

Management Infrastructure

Improvement Training

Figure A1.1 Standard Lifecycle Processes

As shown in Figure Al.1, ISO/IEC_12207-1995 defines a standard set of software
lifecycle processes for software projects. These are:

e Primary Processes. The Primary Processes are those that serve primary parties
during the software lifecycle. These primary parties are the acquirer, the supplier,
the developer, the operator, and the maintainer of software products. Five processes
are defined to support the activities of these parties. These are the acquisition,
supply, development, operation, and maintenance processes. The development

17

DSTO-TR-0596

process is defined in terms of requirements analysis, design, coding, integration,
testing, installation, and acceptance activities.

e Supporting Processes. Supporting Processes are employed and executed, as
needed, by other processes. These processes are defined as the documentation,
configuration management, quality assurance, verification, validation, joint review,
audit, and problem resolution processes.

e Organisational Processes. The Organisational Processes are employed by an
organisation to manage the activities being performed in other processes, provide
and support the project infrastructure, improve the way in which activities are
performed, and provide necessary training. The Organisational Processes are
defined as the management, infrastructure, improvement, and training processes.

A project can be defined in terms of its primary, supporting and organisational
processes. Various supporting and organisational processes are defined for each of the
primary processes. For example, a management process may be defined for each
primary process that forms part of the project context.

18

Appendix 2: Initial Survey of CBSE Environments and
Tools

This appendix provides an overview of an initial survey that has been conducted to
identify environments and tools which could be used to support the Component-Based
Software Engineering Approach proposed in this report. Table A2-1 provides a
summary of the available tools in relation to the tool categories defined in Section 4.
Shaded regions indicate that a vendor offering supports a particular tool category.
Notes are provided for each vendor offering including a brief overview of the tool and
pointers to other online information.

Table A2-1 shows that some vendors provide frameworks which integrate their own
tools and selected third party tools. Other vendors provide individual tools which
support one or more tool categories. The table can be used in several ways. The
horizontal dimension identifies the areas of support provided by a particular vendor
offering. For example, it can be seen that HP Softbench can offer support in most tool
categories. The vertical dimension can be used to identify “best of breed” tools for a
specific purpose.

DSTO-TR-0596

19

Xi0Mm
NOISTHOD
J3a
JAD /sununuo))
paagiaddag
» wea33iq0
uuHIfe)
Rppng+D
‘seppngr
‘“19dj3q puspog
e o Aoy “spoorasyy | swewsimbar
i uomeFeupur Imbox: * WOHEDILIOA cAmed ey 0 o paseq. 001-a@y
= Sjuawennby; |: 30 uonedoy - oraeukq "I Seyerdayuf : Tepow uBiss(] 307 JuddsY
= S “(Iwo
= .. Stwowaninba L [4P00g pased:
r ~Wog uoneaua3 1 -asn juasqoder)
% . osen3saj, voo 1S xiuoy
m S| S seudisaq
) 1eoydean
-~ B B
g . - Lo satdojouyda]
g - Kaoysodar (LINO y3nequmny remyog
g 103fqo udisa(g .- J000g) AOO: | pdUBAPY
Cuu JudmIsRUREy uonepir yundeurpy waseurfy awdopaag
~ aduey) Judwadeurpy B uoneLIdy Juduoeduio) P ping ERL AT, {opuo0)
© M W SSd04] 1aloayg PRpoLd anpnNseajuf ¥ wonridaug ypuoduo) smyppoy OIS | 100 J.00pud §
(=N
3
EOR
) B~
e =)
M &

DSTO-TR-0596

Table A2-1 Summary of CBSE Tools (cont)

JudWRITBURY

aiuey)
N 853004

jJudwWISeUBY
1afoag

uopTpHE A
P uONEYLID,
vnpoig

JHIUWITRUREY
jwanodwo)) ¥
dnpRgseyu]

FUETHEYAI I T
ppng
¥ uonridaug

inwdopadg

NEpRu] Y
wouodwo)

Aunppoly

joqu0)
UOISAd |

{004 JA0pud |

i
o~
V0D W00 |2 suawdoraacp:
. .boumwmmu& . o ..._%5&903 :
oia T P 1] akYi1t s o swelppiom | sjonpoxd Uo10UU0),
JIEMOIQ 3p0) Lo weay a8ylensip agyensip’ . urea) W4l
R F R N " $OAd
(espuy) sjo0) : TR ‘$508 ‘SO
wonEuaNIop (s3e1900)1031) (snidqI0) ‘asenyrea])
aseQIea|) i ‘Rgumg | oo VEROD ool) B kmd
ey amg a1 AT esepaenly | o lomaure)y Saeppnqil. e e Y b pa€I0 ND
51001 B1A Apred pi¢ 730) fued pig | JuIoguourmio)y; L INOXNIN |- 318 B0 Aued pie | YOUSEYOS | WIUIEHOS dH
* wonejuatmoop * poddns Suiyoen
" sigaurasnbas 29 UOnEIO[e 1y
1 -sjuswarmbay HOdIBN-DAD
vonesousd | (o1 ,..,h,amsn
ovco < SRS touln-[eal
- Bwdhiotoud |7 00) pauoddns aPvam
. ‘usamog - :spoypaur Auey IBMYOS |93
SSTAdXA 00
. Kreaqup ssepy-
o bo:mo.&u
‘ (asoy fenonEY poseq.
; “Aured pic o ~Konsodoy Mo DAd
JA0J8IUIT)
uoeaddy
rendiq DIa

DSTO-TR-0596

Table A2-1 Summary of CBSE Tools (cont)

1san()1320qQ0

URITURLTL B ING |

JuruIBRU L
duey)
¥ $$ad04 g

undeuepy
13afoag

uonupe
P uonmIL
10posg

JuWITeUE\
juwanodweo) p
aanpnaseayug

Ju3WITeUBE

ppug
¥ uoneaBuj

wdwdopaag
aepa3u] Y
auedwo))

Buyppory

|

jodju0)
UoISId |

2R 8umss jutodo3prag
_jopomudisoct 2A193[qQ
Anagajuy
92an08 SN
Lo & olpmg
159F [ensIx 1eNSIA 3OS0
SSEL DN
plogoaopy
A OAd | yuamdofansp . oARD
Aaonsodaa: ‘ - uouodwoo i Aonsodar
wouodinog | - pus fiqussse | . fensia-uou. Taueduo)
pangusi - _juouodwio)y | ' pue fensiA d Ajossajuy
(ONO/VENO0D) s o
o aooig g S
7 (veraon) . gudhood
“108eueu palgo o ey
* - pamnqLisip Justdojonsp.
. JoAI38 10D Smatp o901
- fpgeaoen N
5 . sjuswambay
13uswIndoq .:wmw,ov WoISAS - uoneIsNa3 “swreigeip AERIBIS
BELUAGLN SSIEPIRA 3p0) | ¢ amseIAiBisag Xido-1
e [opour uSisop C o
. .«053%:? Sl el " : miﬁmﬂ_v Aposdeyy
‘SISISSY | o ONRWIOINY: L7 - orRHIOINY. SMewomy 2188 T - X1307-1

[00] f10pud |

22

DSTO-TR-05%

Table A2-1 Summary of CBSE Tools (cont)

ensty y
wCU:._:.v:A—

JawRdeuely
aduey)
W §5200.,f

SEEIEY3H TN
1afoa g

uonEpljE s

puposd

wIWITRUR] Y
yuodwo) p
EXLYRLRETT AT 1

JuIWITRUTEY

ping
» uonraiajuy

yudwdopasg
ey y
jnavedwo)

Suyjapojy

foa1u0))

e}
~
e fioysodar S WOWTONATY
Monesijensia . 9rep) “(aImny) .- 1oZeuewt L. avd 0.4 €D
Ayoseiony ssepD) ' sueagensef - joofoxd 9o | paseq-suLog |ensi A IuBWAS
: o pomowrey
L doa s T M R s
.AOmZv,<mMDU b .Fm«:w& St me B doysyaop
[steageAer | - 1o5foxd doysyion - doysyiom CpuegOY- EAE[UNg
o1g sysinbay J . o
oo | femasow
. \ .. RED T SN) o PPOORSOM T (o ysoog | DAD
vQaos: Jjurumg 7 oleNISIL | - XoAdY/INOD g “xady xady “TINN) 950 xady jeuoney
o sLaERD 4 -
oo oepmomedy | ageian0neing £
__aseprea) | - epinpreary . Rung 3580IR31) By ang
' uBisop woxy o
A i &+ UORISUSE ST S PR
Jlomowrey)id pafqopapo) | JouBisageg: |a10A01RMq0 jyogiamog
o | Kopsodar 1YY
: L XRAY 7| amured usang |- _ 1oMq0 | warshs unidog
Jusuadeuew g :
e . W wofoud
fevep sotnour - “Ksoyssodos’ ‘puB fonuod:| I1SIAIBH/DDD
‘smels 399001 Jusuedwon UOISIOA - winuye g
apeIQ

opua \

DSTO-TR-0596

24

NOTES

Advanced Software Technologies Graphical Designer

UNIX/Windows OO design (Booch, Rumbaugh OMT), fast design layout, generates full C++, Java or
Smalltalk (future) code from design.

Reverse engineering of C++ and Java to OMT possible.
Multi-user capabilities (version control, rollback).

Can produce reports for use with Office tools and others.
Object repository.

http://www.advancedsw.com/

Aonix Software Through Pictures (StP)

StP: suite of OOA/D (Jacobsen, use-case, UML, Booch) tools. Can automatically produce test cases
from Booch/OMT designs and requirement specs (http://www.ide.com/Products/StP_T.html).

007: merger of StP and ObjectAda is an OO development environment focusing on reliable software.
Offers navigation between StP models and Ada code (http://www.ide.com/Products/007.htmI).

Ascent Logic RDD-100

Suite of powerful tools for requirements driven development.
Used by multi-disciplined teams to analyze, specify, track, verify, document and manage large,
complex enterprises and development projects.

Supports the complete system-level design and development process and interfaces directly to CASE,
CAE and other component development and publishing tools.

Supports documentation generation in either custom or standard (eg. MIL-STD 490 and DoD-STD
2167A) formats.

Supports requirements management/atlocation.
Cost estimation.

http://www.alc.com/productfamily.html.

Borland

Delphi: component-based RAD tool for Windows (http://netserv.borland.com/delphi/). Includes visual
component library, COM/ActiveX support and object repository. Intersolv PVCS version control is
optional. Tight database integration.

C++Builder: component-based visual RAD environment for C++, very similar to Delphi (uses same
visual components and database integration technology) (http://www .borland.com/bcppbuilder).
Supports ActiveX as one component model. Focus on reuse and component repository. Uses PVCS for
CM.

C-++Builder's extended Open Tools API lets you add custom development tools directly into the
C++Builder environment. Link into your favourite editor, interact with Case tools, or activate a version
control management system. Automate repetitive tasks by creating your own wizards.

JBuilder: C++Builder/Delphi for Java (http://www.borland.com/jbuilder/). AppBrowser combines the
features of a project manager, a class browser, and a source code editor into a single view to make
managing, navigating, and editing source code easier than in any other tool. Uses JavaBeans/ActiveX
as component models. Will support CORBA 2.0 via Visgenic ORB (http://www.visigenic.com/).

DSTO-TR-0596

Cayenne

ObjectTeam: OO development tool
(http://www.cayennesoft.com/products/solutions/objectteam_java.html). Supports modelling, multiple
languages (Java, Ada, CORBA IDL), component reuse. Supports iterative development. Repository
supports CM and version control and allows component storage. Works with PowerBuilder and DEC
Forté.

TeamWork: UNIX-based project development environment
(http://www.cayennesoft.com/products/datasheets/teamwork-environment.html). Supports all phases of
development.

PepperSeed: UML & Booch OO design tool (http://www.cayennesoft.com/pepperseed/). Reverse
engineering, code generation. Integration with Office products. Supports Microsoft’s object repository
standard.

Continuus/CM

CM for Unix and Windows (http://www.continuus.com/products/productsBB.html). VC, build
management, workflow management, change and problem tracking. GUI interface, graphical project
views

Supports Microsoft development tools.
http://www.continuus.com

DEC

COHESIONworX: a UNIX-based (SunOS, Digital UNIX and HP/UX) distributed multi-platform
software development environment (C++, Ada) that has been developed from ASD/SEE
(http://www.digital.com/info/cohesion/COHESIONworX/index.html). Includes a flexible integration
framework, a graphical desktop, and a set of integrated development tools, FUSE a graphical
programming tool and Integration Framework controls and integrates tools across a distributed UNIX
network, including systems from Digital, SUN, and HP. Has two configuration management options:
ClearCase from Pure Atria and PCMS from SQL Software. See BYTE article at
http://www.byte.com/ART/9407/SEC10/ART6.HTM.

Digital Application Generator: VB-based RAD tool for client-server/three-tier distributed
applications for Windows (http://www.digital.com/info/application-generator/text/summary.html).
Supports design, development and deployment of Visual Basic applications. Code can be generated
from design. From one design, you can generate source code, compile, and link applications to satisfy
different requirements, including language, capacity, and platform requirements. Support for ODBC
and OLE. Provides application templates (presumably a development framework).

Forté: OO RAD using a 4GL supporting distributed application development
(http://www.americas.digital.com/forte/). Graphical user interface (GUI) designer, Object-Oriented
4GL (fourth generation language), Comprehensive class libraries, Graphical debugger (multi-task
debugging), Partitioning workshop (Automatic customizable partitioning), Cross platform code
generation and optimization capabilities, Automatic application distribution and testing features,
Application monitoring and customizable management interfaces, Team development repository
(supports distributed team development). Supports Win32 and various flavours of Unix. Middleware
support for CORBA 2.0 (ObjectBroker), OLE, DCE and others. Integrates with Rational Rose.

ObjectBroker: the first commercially available CORBA ORB
(http://www.digital.com/info/objectbroker/). CORBA 2.0 compliant, integrates with DDE, OLE and
Visual Basic. CORBA objects can be accessed via OLE Automation. Working with Microsoft to
increase integration with Windows.

25

DSTO-TR-0596

26

DocEXPRESS

Automatic documentation in many formats (DOD, MIL, IEEE, ISO) from design model (OMT, UML,
etc). Supports FrameMaker, Word, Interleaf publication.

Support for Doclt from Cayenne, Paradigm Publisher from Platinum.

http://www.docexpress.com/

Excel Software WinA&D/MacA&D

Supports SE methods. Structured analysis and design (Yourdon/DeMarco and Gane/Sarson), real-time
(Mealy, Moore, etc), state and flow-control, OOA/OOD methods (Shlaer/Mellor, Coad/Y ourdon,
Booch, OMT, Jacobson and Fusion).

Live screen prototyping.

Requirements traceability.

Code generation for C, C++, Pascal, Object Pascal (Delphi), Basic and SQL.
Unix/Mac/Win32

http://www.excelsoftware.com/overview html.

GEC-Marconi Requirements Database Tool (RDT)

Captures the systems engineering design process and manages system requirements. Automates
requirement tracking.

Features: Requirements capture from external documents including MS Word; Functional allocation to
subsystems, Traceability between parent and child requirements via derivation entities; Test
requirement allocation to any requirement; Automated document production including requirement
and test specifications, Requirement Allocation Matrices, parent-child relationships directly into MS
Word; Microsoft Windows and Microsoft Access compatible; Network accessible for distributed
multi-user database access; Comprehensive on-line context sensitive help.

http://www.world.net/gecm/

HP

SoftBench

e A component-oriented C++, C, COBOL application development environment
(http://www.hp.com/sesd/WhatsNew/aberdeen.html).

e Hewlett-Packard is in the process of porting Taligent's CommonPoint framework-based
application system to HP-UX. Essentially, CommonPoint consists of a tightly integrated suite of
pre-built software components written in C++. SoftBench can be used to modify these
components -- or frameworks -- resulting in customized applications. HP believes that the more
object-adept users of SoftBench will soon want to use CommonPoint to build collaborative,
desktop applications that can run on a wide range of hardware platforms.

e HP provides Object-Oriented Distributed Computing Environment (OODCE), which can be used
in conjunction with SoftBench to create applications that run on top of the OSF's Distributed
Computing Environment (DCE). Also, a Sub-Process Control Daemon (SPCD) is available for
SoftBench, which when ported to a range of UNIX and non-UNIX platforms supplies cross-
development capabilities. In the first half of 1996, HP will roll out its ORB Plus, which will let
developers create CORBA-compliant C++ applications with C++ SoftBench.

e SoftBench is able to graphically depict the structure of an application and the objects that
comprise the software.

DSTO-TR-0596

¢ SoftBench is also well suited for a distributed computing model -- both from a development and
deployment perspective. SoftBench CM enables developers to collaborate on a project, even
when they are distributed across an enterprise. For deployment, SoftBench can be used to build
applications that make use of the OSF's DCE, enabling various software modules to be executed
on multiple hardware platforms networked together.

e SoftBench CM (http://hpcc920.external.hp.com:80/sesd/products/softcm/main.html): distributed
CM system for SoftBench tools.

e No testing support, but CodeAdvisor (http://hpcc997.external.hp.com:80/sesd/CA/main.html)
does support checking of source code for common problems.

e Good 3™ party tool support: http://hpcc920.external.hp.com:80/sesd/3rdparty/main.html.

HP OrbPlus: a C++ CORBA 2.0 ORB for HP-UX, Solaris, NT
(http://www.hp.com/pressrel/apr96/02apr96h.htm). Interoperability between OLE Automation and
ORB Plus. Will have 2-way mapping from COM/OLE to CORBA.

IBM

VisualAge: OO RAD environment (hitp://www.software.ibm.com/ad/). Supports Basic, C-++, Cobol,
Java, Smalltalk. VisualAge for Java just entered beta testing
(http://www.software.hosting.ibm.com/ad/vajava/).

BeanMachine: a visual Bean authoring tool (http://www.ibm.com/java/appletauthor/).

WebRunner: “Developed by Taligent, VisualAge Webrunner supports the building and testing of
JavaBeans and eases the development of high-performance, client/server applications for the web.”
(http://www.taligent.com/)

o Includes JavaBeans Migration Assistant for ActiveX, which allows ActiveX components to
be moved into the JavaBeans framework.

TeamConnection: “provides a unique combination of software configuration management and
repository services on a high performance system. Through the use of an open object interface,
TeamConnection provides for the access and extension of an object-based information model.” Can
work within the VisualAge toolkit. Open and extensible OO information model for tools. Suppports
Win32, 0S/2 and AIX. Strong CVMC support. (http://www.software.ibm.com/software/ad/teamcon/)

SOM 3.0 for AIX, OS/2 and Windows NT: CORBA 2.0 (with extensions) ORB
(http://www.software.ibm.com/ad/somobjects/)

Open Class Library: IBM's common platform C++ library for OS and GUI facilities and is now part of
the VisualAge/C++ product (0S/2, AIX, Win32)

OpenDoc: cross-platform component technology based on CORBA (non-IBM info at
http://opendoc.macintosh.net/). Has been dropped by Apple and Oracle. Likely be absorbed into
JavaBeans.

iLog

iLOG Views: Platform-independent GUI development studio, including 2D graphics engine, charts,
cartographic support built on a portable C++ GUI framework
(http://www ilog.fr/Products/Views/DataSheet.html). Supports OLE/ActiveX.

ILOG Server: distributed object repository (implemented as a C++ framework) that integrates
application and data components (http://www.ilog.fr/Products/Server/). Supports object relations,
composition, communication and reuse. “enables the deployment of state-of-the-art applications such
as trading, network management, traffic supervision and C3I systems”. Can work with CORBA 2.0
packages such as Orbix.

iLOG Broker: allows C++ application to transparently support distributed object computing.
Supports Sun ONC/RPC and CORBA backbones (http://www.ilog.fr/Products/Broker/).

27

DSTO-TR-0596

iLOG Talk: rapid prototyping environment for C/C++, supports prototyping in Lisp + high-level
object model and compiling to C/C++ (http://www.ilog.fr/Products/Talk/).

i-Logix

StateMate: system design via 3 FSM model types (http://www.ilogix.com/products/cbro.htm).
Provides design automation for the systems developer through modeling, analysis, and code generation
capabilities. These functions enable a design team to significantly reduce system development cycle
time and improve the quality of the design. Three separate modeling views enable independent capture
of behaviour, functionality, and structure. Supports Ada and C. Also optionally supports
documentation via Statemate Documentor (http://www.ilogix.com/products/docbro.htm).

e Allows generation of GUI mockups during design phase.
e Can simulate and verify models.

e VC support.

e Requirements traceability.

Rhapsody: produces complete production quality code from high level designs (UML and state
diagrams) and graphically animates execution behaviour
(http://www.ilogix.com/products/thapsod.htm). This allows software developers to shift their focus
from coding and debugging to design and analysis while reducing the total development cycle. Design
browser, design animation for debugging design model.

Intersolv

Allegris: component-based OO development framework
(http://www.intersolv.com/products/allegris.htm). Supports creation (via Workshop), storage,
assembly and configuration management (via Object Repository) of software components. Supports
creation and assembly of visual and non-visual components. Repository integrates with PVCS.
Supports Windows, Unix and OS/2.

PVCS: software change management and version control system
(http://www.intersolv.com/products/scm.htm).

e RequisitePro: integrates requirements management, requirements traceability and PVCS
(http://www.intersolv.com/products/pvcs-reqpro.htm). “with PVCS RequisitePro, you can
control expectations and ‘feature creep’, reduce costs and delays and improve quality.
Change history and version control is offered at the individual requirement, document and
project level within PVCS RequisitePro and more fully with PVCS Version Manager,
ensuring that the latest requirements are known and incorporated into the development
process.” Supports CMM and ISO 9000 standards. Integrates with MS Word.

e Configuration Builder: automates build and construction of systems and maintains audit
trails.

e Reporter: generates reports on project status.

e Tracker: change management & manage/prioritise workloads, trend analysis for predicting
completion times.

e Version Manager: version control and workflow automation.

Microgold With Class

28

Win32 OOA/D tool: multi-methodology OO modelling, code generation, reverse engineering for
C++/Delphi/Java/Ada/Basic and ODBC databases.

http://www.microgold.com/

DSTO-TR-0596

Microsoft

e Visual Studio: integrates Java, C++, Basic, etc languages into one IDE
(http://www.microsoft.com/vstudio/news/default.htm). Complete support for ActiveX/COM for all
languages including Wizards for creating ActiveX components. Visual Test, Visual Modeller
integrate with this basic framework. Visual Studio 97 Enterprise Edition includes: Visual Basic 5.0,
Enterprise, Visual C++ 5.0, Enterprise, Visual FoxPro 5.0, Visual J++ 1.1, Professional Edition
Professional Edition, Visual InterDev, Visual SourceSafe 5.0, Microsoft Transaction Server, Developer
Edition, SQL Server 6.5, Developer Edition, MSDN Library CD-ROM. ODBC and WWW support are
also main components.

¢ Visual InterDev: an ActiveX-based WWW-based IDE (http://www.microsoft.com/vinterdev/ see also
PC Week http://www.pcweek.com/news/1209/09tools.html).

e Java SDK 2.0 includes AFC foundation classes for Java.

e Visual Test: fast, graphical, automated testing tool for the Studio IDE. Designed to keep up with a
RAD/component development approach. Licensed by Rational for use in their development
environment.

¢ Visual Modeller (not yet released): UML modelling for Visual Studio
(http://www.microsoft.com/vfoxpro/vfevaluate/vismodpr.htm).

e Model integration framework: “Microsoft Corp. today announced that 21 leading enterprise modeling
vendors will support the Microsoft® Repository and have joined in an effort with Microsoft to develop
the Unified Modeling Language (UML) information mode!. Tcols from vendors implementing this
functionality can interoperate through the Microsoft Repository. This interoperability enables teams of
corporate developers to easily share models developed with different modeling tools, enabling higher-
quality component-based application development and reuse. Slideshow
(http://www.microsoft.com/repository/articles/damaover/s}d001.htm).

MKS Source Integrity

e Project-oriented CM system. Runs on many platforms, supports many IDE’s (Powerbuilder, Microsoft
Visual Basic, Microsoft Visual C++, Borland C++, Borland Delphi, etc). Supports client/server
development.

¢ http://www.mks.com/solution/si/2150.htm

Objective Spectrum Bridgepoint

o Bridgepoint is the definitive Shlaer/Mellor Object Oriented Analysis (OOA) and Recursive Design
(RD) tool, providing total method automation from analysis to code generation. Developed by
accomplished Shlaer/Mellor practitioners, this tool set is being used by leading companies seeking to
automate their entire software development process. BridgePoint customers are successfully creating
reuseable analysis and design components, leaping ahead of traditional code reuse programs. The result
is significantly reduced time to market, increased quality, and a more predictable software development
process.

¢ Simulation model to test design.
o Uses ObjectStore OODBMS to for repository and version management.
¢ http://www.informatik.th-darmstadt.de/OS_UG/mirror/partners/var/objspec.html

ObjectQuest

e Business-oriented OO RAD environment: supports UML-like object modelling (business objects in
particular), C++ code generation, GUI designer and testing tools. Built on MFC on Windows

29

DSTO-TR-0596

30

platforms. Uses CORBA or TP to manage interconnection in client/server systems. Object repository
for storing objects and meta data.

Persistence toolkit allows use of an RDBMS without using SQL.
http://www.objectquest.com/products/prodfram.htm

Oracle

Designer/2000: visual system design and modelling of applications and processes (oriented towards
business processes) (http://www.oracle.com/products/tools/des2k/prodov/prodov.html). Can generate
code, forms and databases from design model. Support for OLE and CORBA.
e Open repository design allows use of 3" party repositories. Full version/access control for
repositories.
Developer/2000: companion to Designer/2000. Provides GUI development and database connectivity
(http://www .oracle.com/products/tools/dev2k/index html).

Platinum CCC/Harvest

Repository-based change and configuration management solution that synchronises development
activities across heterogeneous platforms during the entire application development lifecycle.

Unix/Win32/0S/2.
Interfaces with MS Visual tools and PowerBuilder.

CM, reusable component management, life-cycle modelling, project status information, process metric
reports.
http://www.platinum.com/products/appdev/cccharps.htm.

Popkin System Architect

Data modelling, OOA/D (UML and other notations) and GUI design. Supports round-trip
design/implementation method (reverse engineering). Shared repository for models includes
version/access control. PVCS version contro! for files.

Project documentation facility available. Project management: requirements tracking, change requests,
etc.

Screen painter for GUI development
Can link with PowerBuilder.
http://www.popkin.com/prods/product.htm

PowerSoft (Sybase)

PowerBuilder 5.0: OO RAD environment (http://www.powersoft.com/products/devtools/pb50/)

e Supports OLE Client/server development for Windows, Mac, Solaris. Includes PFC, a
framework for OO applications.

e ObjectCycle project-based CM system.
e Internet development support.
e Object browser

PowerSite: supports building WWW-based applications using other PowerSoft tools
(http://www.powersoft.com/products/internet/powersite/). :

PowerJ/Jato: Java RAD environment (http://www.powersoft.com/products/internet/javatool/)

o Supports JavaBeans, ActiveX component models.

DSTO-TR-0596

e JDBC support.

e S-Designor: design tools for PowerBuilder family
(http://www.powersoft.com/products/design/sd_info.html). ProcessAnalyst, AppModeller,
DataArchitect, MetaWorks subcategories support process/data flow modelling, application modelling
with code generation (Visual Basic), database design/generation and data dictionary management.

e Optima++: Delphi-like C++ RAD environment.

Pure Atria

¢ ClearCase: Provides comprehensive software configuration management (SCM), including version
control, workspace management, build management, and process control that scales from small project
teams to the entire enterprise, available for Windows and UNIX
(http://www.pureatria.com/products/clearcase/index.htm!).

¢ ClearGuide: software process management
(http://www.pureatria.com/products/clearcase/clearguide/cg_datasheet.html). Project planning, process
modelling and definition. Integrated with ClearCase.

e ClearDDTS: Defect tracking and change request management system
(http://www.pureatria.com/products/clearddts/index.html). Tracks change requests, such as known
defects and enhancement requests, throughout the product lifecycle

o Purify: memory use testing (http://www.pureatria.com/products/purify/index.html).
o PureCoverage: test coverage monitor.

e Pure Atria Recently acquired by Rational so we should see integration of products.

Rational

e Licensed Visual Test from Microsoft. Rational and Microsoft agreement means that all Rational and
Microsoft tools should be fully integrated.

e Objectory: process, environment and support tools package to enable CMM level 5 OO development
(http://www.rational.com/pst/products/obj_broch.html). Supports domain object models, use-case,
implementation methods, testing, reverse engineering, etc.

e SoDA: automatic documentation system (http://www.rational.com/pst/products/rosesoda.html).
Supports requirements, analysis, design and testing documentation.

e Apex: Development environment for C++, Java, Ada
(http://www.rational.com/pst/products/apexccpp.html). Provides support for all SE processes by
combining CM, code development, architecture development and control with other Rational products
such as Rose, TestMate and SoDA.

¢ Rose: 00 modelling tool (UML, Booch, business process modelling) for Visual Basic, C++, Java, Ada,
SmalltalkPowerBuilder (http://www.rational.com/pst/products/rosefamily.html). Also supports
CORBA 2.0 IDL.

e Requisite Pro (http://www.requirement.com/reqpro.htm): requirements management tool. Integrates
with Microsoft Office. Integrates with PVCS. Can search for requirements within documents.
Requisite Baseline is a version for smaller projects (http://www.requirement.com/Regbase.htm).

e Summit: change management, process automation and problem tracking for Apex
(http://www .rational.com/pst/products/summit_tm.html). Can use GUI (Rose) to help define processes.
Integrates with MS Project and Excel. Comes with predefined processes.

e TestMate: testing framework for Ada (ie Apex/Ada)
(http://www.rational.com/pst/products/testmate_ada.html). Unix support only.

31

DSTO-TR-0596

32

Sun

Java Workshop: visual development environment for Java applications
(http://www .sun.com/workshop/index.html). Latest is version 2.0 beta.

JDK 1.1.1; JavaBeans, new event model, drag & drop plus clipboard support, more advanced graphic
capabilities, serialisation, new event model, etc.

Joe 2.0: free CORBA ORB written in Java supports [IOP
(http://www.sun.com/solaris/neo/joe/index.html).

NEO 2.0: Solaris NEO 2.0 is Sun's distributed object environment
(http://www.sun.com/solaris/neo/solaris_neo/). Connectivity with Win32 platforms and Solstice
graphical distributed object management tools. “Real-time” object conversion between COM and
CORBA object systems. Bi-directional interoperability among OLE, COM and NEO object systems.

Symantec Visual Café Pro

Forms-based RAD environment for Java. Extended component library including full support for
database access (JDBC), windows-like controls and WWW-enablement.

Will support JavaBeans component model and Java specifications for persistence, drag & drop, etc.
Supported platforms: Win32 and Macintosh.

http://www.symantec.com/cgi-bin/menu.cgi

TakeFive Sniff

Sniff (http://www.takefive.com/products.htm): IDE for Java, C++ and others. CM, browsing.

Centerline QC/Advantage

QC/Advantage enables teams to integrate, automate and manage multitudes of tests, tools and
information for testing complex network-centric distributed applications throughout the development
lifecycle.

http://www.centerline.com/products/

DSTO-TR-0596

Supporting a Component-Based Software Engineering Approach for the Development of
Takari Products and Future Command and Control Systems

R.]. Vernik, M.P. Phillips and S.F. Landherr
(DSTO-TR-0596)

DISTRIBUTION LIST
Number of Copies
AUSTRALIA
DEFENCE ORGANISATION
Task sponsor:
DGCSS 1
PM]JP2030 1
S&T Program
Chief Defence Scientist)
FAS Science Policy) 1 shared copy
AS Science Corporate Management)
Director General Science Policy Development 1
Counsellor, Defence Science, London Doc Control Sheet
Counsellor, Defence Science, Washington Doc Control Sheet
Scientific Adviser to MRDC Thailand Doc Control Sheet
Director General Scientific Advisers and Trials) 1 shared copy
Scientific Adviser - Policy and Command)
Navy Scientific Adviser 1 copy of Doc Control Sheet
and 1 distribution list
Scientific Adviser - Army Doc Control Sheet
and 1 distribution list
Air Force Scientific Adviser 1
Director Trials 1
Aeronautical & Maritime Research Laboratory
Director 1
Electronics and Surveillance Research Laboratory
Director 1
Chief Information Technology Division 1
Research Leader Command & Control and Intelligence Systems 1
Research Leader Military Computing Systems 1
Research Leader Command, Control and Communications 1
Executive Officer, Information Technology Division Doc Control Sheet
Head, Information Architectures Group 1
Head, Information Warfare Studies Group Doc Control Sheet
Head, Software Systems Engineering Group Doc Control Sheet
Head, Trusted Computer Systems Group Doc Control Sheet

33

DSTO-TR-0596

34

Head, Advanced Computer Capabilities Group
Head, Computer Systems Architecture Group
Head, Systems Simulation and Assessment Group
Head, Intelligence Systems Group

Head, CCIS Interoperbility Lab

Head Command Support Systems Group

Head, C3I Operational Analysis Group

Head Information Management and Fusion Group
Head, Human Systems Integration Group

Task Manager

Author

Publications and Publicity Officer, ITD

DSTO Library and Archives

Library Fishermens Bend
Library Maribyrnong
Library Salisbury
Australian Archives
Library, MOD, Pyrmont

Capability Development Division

Director General Maritime Development
Director General Land Development
Director General C3I Development

Intelligence Program

DGSTA Defence Intelligence Organisation

Corporate Support Program (libraries)

OIC TRS Defence Regional Library, Canberra

. Officer in Charge, Document Exchange Centre (DEC),

US Defence Technical Information Center,

UK Defence Research Information Centre,
Canada Defence Scientific Information Service,
NZ Defence Information Centre,

National Library of Australia,

Universities and Colleges

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

Doc Control Sheet
Doc Control Sheet
Doc Control Sheet
1
Doc Control Sheet
1
Doc Control Sheet
Doc Control Sheet
Doc Control Sheet
1
3
1

N =

1
Doc Control Sheet

Doc Control Sheet
Doc Control Sheet
Doc Control Sheet

[Y S ey

[UEGIEY

Deakin University, Serials Section (M list)), Deakin University Library,

Geelong, 3217

Senior Librarian, Hargrave Library, Monash University

Librarian, Flinders University

[y

Other Organisations
NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia

OUTSIDE AUSTRALIA

Abstracting and Information Organisations
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts
Documents Librarian, The Center for Research Libraries, US

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and
Technology, US

SPARES

Total number of copies:

b e

U G U GV

10

63

DSTO-TR-0596

35

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
Supporting a Component-Based Software Engineering THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
Approach for the Development of Takari Products and Future CLASSIFICATION)
Command and Control Systems Document L)
Title L)
Abstract 5]
4. AUTHOR(S) 5. CORPORATE AUTHOR
R.]J. Vernik, M. P. Phillips and S. F. Landherr Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-0596 AR-010-394 Technical Report December 1997
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF
N9505/13/109 N/A DGCSS PMJP2030 46 REFERENCES
12
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
N/A Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT
Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUCH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT
No limitations

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS
Command control communications and intelligence

Information Warfare
Project Takari

Defense projects (Australia)
Australian Defence Force

19. ABSTRACT

This report discusses issues related to the methods and tools required to support the development and
evolution of future generations of Command Control Communications Intelligence and Information
Warfare (C3I/IW) systems. It focuses on concepts and approaches defined as part of the Takari
programme and considers issues related to tool support for the development of Takari Capability and
Technology Demonstrators (CTDs) such as the proposed Experimental C3I Technology Environment
(EXCBITE). A Component-Based Software Engineering (CBSE) lifecycle, which includes both Domain
Engineering and Product Engineering, is proposed as a possible development strategy. A tool
categorisation framework is defined to help define tool requirements. An initial survey of CBSE tools
provides examples of currently available tools which could be considered for each of the tool categories

Page classification: UNCLASSIFIED

